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The earth's climate is a dynamic system, susceptible to changes caused by factors

we call forcings. The forcing generated by carbon dioxide and other greenhouse

gases, resulting in climate warming is one example. Particles, suspended in the
atmospheres, can cause a different forcing of the climate system. We call these

particles, aerosols, and they are input into the air by human activity (air

pollution, smoke from biomass burning, dust from land use changes) and also

natural processes (ocean generated salt, natural windblown dust). Manmade

aerosols can create a climate forcing by reflecting sunlight back to space, which

would result in climate cooling. Currently there is great controversy on the

magnitude of this type of aerosol climate forcing. We expect that the launch of

the modern satellite sensors such as the MODerate resolution Imaging

Spectroradiometer (MODIS) aboard the EOS-Terra satellite will improve our

estimates of aerosol climate forcing because these new sensors are specifically

designed to measure aerosols.

Truly, MODIS will observe aerosols with unprecedented accuracy. Already

preliminary validation efforts show that MODIS aerosol algorithms meet or

exceed pre-launch expectations. However, measurement uncertainties remain.

In the current study we investigate how the measurement uncertainties of the

MODIS retrievals propagate into uncertainties of estimates of aerosol climate

forcing. We concentrate on one type of aerosol: Southern Hemisphere smoke

from biomass burning. We use simulations of global aerosol transport models as

a tool to help us determine the spatial extent of the smoke in the Southern

Hemisphere.

MODIS will do an excellent job of estimating aerosol forcing in regions with high

aerosol loading, but experience greater error in estimating the forcing over vast

ocean regions where the amount of smoke aerosol is very low. Depending on the
errors MODIS will experience from calibration, from assumptions in the retrieval

algorithm and most importantly from assumptions of separating man made

aerosols from natural background aerosols, MODIS can be expected to estimate

total smoke forcing of the Southern Hemisphere to within 21-56%. We propose



different strategies to reduce theseuncertainties by using the MODIS data more
creatively, either independently or in conjunction with ground-based stations
and global transport models in anassimilation fashion. The new satellite sensors
have an important role to play in estimating aerosol climate forcing, but an

assimilated approach will be necessary to realize the full potential of the satellite

remote sensing.
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Abstract

The new generation of satellite sensorssuchas the MODerate resolution Imaging

Spectroradiometer (MODIS) will beable to detectand characterizeglobal

aerosolswith an unprecedented accuracy. The question remains whether this

accuracy will be sufficient to narrow the uncertainties in our estimatesof aerosol

radiative forcing at the top of the atmosphere. Satellite remote sensingdetects

aerosol optical thickness with the leastamount of relative error when aerosol

loading is high. Satellites are less effective when aerosol loading is low. We use

the monthly mean results of two global aerosol transport models to simulate the

spatial distribution of smoke aerosol in the Southern Hemisphere during the

tropical biomass burning season. This spatial distribution allows us to determine

that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in

grid squares with sufficient signal to noise ratio to be detectable from space. The

uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere

depends on the uncertainty introduced by errors in estimating the background

aerosol, errors resulting from uncertainties in surface properties and errors

resulting from uncertainties in assumptions of aerosol properties. These three

errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in

determining the Southern Hemisphere smoke aerosol forcing at the top of the

atmosphere. The range of values depend on which estimate of MODIS retrieval

uncertainty is used, either the theoretical calculation (upper bound) or the

empirical estimate (lower bound). Strategies that use the satellite data to derive

flux directly or use the data in conjunction with ground-based remote sensing

and aerosol transport models can reduce these uncertainties.



1.0Introduction

The role of aerosol forcing remains one of the largest uncertainties in

estimates of man's impact on the global climate system (IPCC, 1996). Man-made

aerosols may cool the earth directly by scattering radiation back to space

(Charlson et al., 1992;Lacis and Mischenko, 1995). They may cool the earth

indirectly by increasing the number of CCN in clouds, and thereby increasing the

number of cloud droplets and the reflectance back to space (Twomey, 1977).

Man-made aerosols may also influence the radiative balance in other ways

including absorption of solar radiation and changing atmospheric stability

profiles and subsequently cloud formation (Hansen et al., 1997).Satheeshand

Ramanathan (2000)using measurementsin INDOEX showed that understanding

radiative forcing at the top of the atmosphere is not enough to represent the

aerosol effecton climate. Absorbing aerosol, e.g.biomass burning (Martins et al.,

1998),regional pollution over the Indian Ocean (Satheeshet al., 1999)and dust

(Alpert et al., 1998)can affect atmospheric heating rates, evaporation and cloud

formation; thus affecting climate even without directly changing the energy

balance at the top of the atmosphere. However, the top of atmosphere energy

forcing remains an important unknown quantity in the equation and forms the

focus of this paper.

Although much progress has been made in the past decade in terms of

characterizing aerosol properties, identifying their extent and determining their

role in the radiative balance, too much uncertainty remains to make definitive

statements. Narrowing the uncertainty is vital, yet how do we proceed?

One school of thought suggests that remote sensing by satellite sensors



will provide the data necessaryto narrow theseuncertainties. Much effort has

gone into the development of new satellite sensors specifically designed to

retrieve aerosol loading and some information about the sizes of the aerosols.

These next generation remote sensing instruments (EOS-MODIS, EOS-MISR,

POLDER, ATSR, MERIS, GLI, OMI) will provide unprecedented accuracy in the

retrieval of aerosol loading (optical thickness and mass) (King et al., 1999).

Algorithms are also being developed to transform the satellite signal to measures

of aerosol radiative forcing directly at even greater accuracy [Kaufman and Tanr6

in preparation, 2000]. These polar orbiting satellites will provide truly global

coverage of the earth in a way that ground-based networks and intensive field

campaigns can never achieve. With constellations of these instruments soon to

be orbiting the earth, we anticipate finally narrowing the uncertainties in

determining aerosol forcing at the top of the atmosphere.

On the other hand, satellite sensors are not a panacea to the problem.

Although the new generation of sensors has excellent accuracy compared to the

heritage instruments of the past (Chu et al., 1998; Tanr6 et al., 1999), they still

have measurement limitations (King et al., 1999; Kaufman et al., 1997; Tanr6 et

al., 1997). In clean, pristine regions the absolute magnitude of the uncertainty in

the aerosol retrieval becomes comparable in magnitude to the signal itself.

Therefore in pristine regions where accurate measurements are needed to

determine 'background' conditions, errors may be relatively large.

Much of the important aerosol radiative forcing may occur within the

noise level of the accuracy of the remote sensing measurements. Man-made

aerosols can be transported far from the source regions (McGovern et al., 1999;

Perry, 1999). Biomass burning aerosols traced from the continents were observed



in the remote southern oceanduring PEM-Tropics (Stoller et al., 1999). Although

concentrations were dilute, the background aerosol is also of small magnitude.

The imported man-made aerosol could effectively double the aerosol loading in

remote regions (Stoller et al., 1999).This doubling of aerosol in remote regions

over a large enough area of the earth may play a large role in the total direct

global aerosol forcing even though absolute magnitude of the aerosol is small.

Furthermore, clouds in pristine regions can be CCN limited and much more

susceptible to additions of small quantities of additional aerosol as CCN. The

major effect of aerosol indirect forcing may occur in remote regions far from

sources. If much of the aerosol forcing is occurring at very low magnitudes of

aerosol concentrations, satellite remote sensingwill miss it.

Another limitation of remote sensing is that satellites seethe atmosphere

as it is now, not the changesdue to human activity. They will measure aerosol

that includes both a man-made component (industrial origin, biomass burning

origin) and a natural component (desert dust, seasalt). Remote sensing cannot

separate the aerosol measurement into components, except in the coarsest of

manners by separating by aerosol size. Knowing the magnitude of the

background aerosol signal is a prerequisite before determining the magnitude of

the man-made perturbation to the signal, a pre-requisite that satellites may not

meet.

A strategy must be developed to best use satellite remote sensing to

narrow the uncertainties in determining aerosol radiative forcing. The

limitations of the satellite retrieval algorithms must be quantified. We must

know a priori what to expect from satellite data and how to merge satellite data

with ground-based data and numerical models. This study, we hope, is a first



step in developing such a strategy. We start with the pair of aerosol retrieval

algorithms developed for the EOS-MODIS instrument (Kaufrnan et al., 1997;

Tanr6 et al., 1997), and use the uncertainties inherent in these algorithms as

representative of the next generation of remote sensing in general. To simulate

the distribution of aerosol we usesimulated data from aerosol transport models.

In order to avoid the complications of multiple types of man-made aerosolswe

turn to the distribution of biomass burning aerosol in the Southern Hemisphere

during the seasonwhen smoke aerosol dominates the man-made contribution to

the aerosol loading.

This study is not an intercomparison of global transport models. It is not

an estimation of global aerosol forcing. This study is an exercise to determine

whether satellite remote sensing can live up to the high expectations

surrounding its development.

2.0 Uncertainty of MODIS aerosol retrievals

The MODIS procedure for the remote sensing of aerosol consists of two

separate algorithms. One derives aerosol over land (Kaufman et al., 1997) and

makes use of dark targets identified with the mid-IR channels (Kaufman et al.,

1997) and dynamical aerosol models (Remer and Kaufman, 1998; Remer et al.,

1998; Tanr6 et al., 2000). The other derives aerosol over the ocean by inverting

the multi-spectral radiance field (Tanr6 et al., 1997).

In both methods, the retrievals will be affected by errors associated with

estimating the surface reflectance, instrument calibration, and assumptions of

aerosol properties that are not retrieved in the algorithm. The uncertainty

introduced by estimates of the surface reflectance, either over land or over ocean,



appears as an offset. It is independent of the aerosol loading or optical thickness

0:) and will contribute proportionally larger relative error at smaller optical

thicknesses. The uncertainties introduced by assumptions of aerosol optical

characteristics are dependent on the optical thickness, increasing linearly as z

increases. Uncertainty in the instrument calibration can contribute both to the

absolute and relative errors. We describe the uncertainties in the retrievals as:

A_ = _+0.05_+0.20 _ (Land (Kaufman et al., 1997)) (la)

dl_ = _+0.05_+0.05 z (Ocean (Tanr6 et al., 1997,)) (lb)

where A_ is the uncertainty. Equations 1 were derived from theoretical sensitivity

studies and pertain to individual retrievals. We refer to Equations 1 as LOW

accuracy.

Figure 1 shows the Southern Hemisphere distribution of retrieval signal-

to-noise ratio (_/A_) based on Equations 1 and applied to the August monthly

mean results of (Tegen et al., 1997). Also shown in Figure 1 is the model derived

August monthly mean smoke optical thickness. We see signal-to-noise ratio is

high over the parts of the continents where optical thickness is high and largest

in the ocean regions just offshore and downwind of the smoke source regions.

However, Figure la shows the large extent of the Southern Hemisphere in which

the uncertainty of our retrievals is comparable in magnitude to the magnitude of

the signal itself (I:/A_-1).

We find that Equations 1 can over predict the error when the retrieval

algorithms are applied to actual field conditions. (King et al., 1999) report that



for the specific examples of urban/industrial pollution over the Atlantic

(TARFOX) and biomass burning smoke over South America (SCAR-B) the

retrieval errors canbe reduced to

A_=_+0.05_+0.15

A_=_+0.01_+0.05

(Land)

(Ocean)

We refer to Equations 2 as HIGH accuracy.

(2a)

(2b)

In other situations with different

aerosol types and surfacebackgrounds, errors may be larger than thoseobserved

during thesespecific campaigns.However many of the errors may be random, as

shown in the TARFOX and SCAR-B field validations. This createsthe possibility

that the averagevalue of an ensembleof retrievals will actually be more accurate

than Equations 1suggest.

Equations 1 and Equations 2 offer two measures of the errors expected

from the MODIS retrievals. Equations 1 are a conservative estimate based on

theory as applied to individual retrievals. As we seefrom field experiments in a

well-characterized environment, the uncertainties can decrease significantly.

Equations 2, based on these field experiments, offer an alternative measure of

uncertainty for individual retrievals that may be optimistic, but is certainly

achievable in some regions. In other regions it may represent the errors

associated with weekly or monthly averages. Preliminary validation of actual

MODIS retrievals suggests that the uncertainty does indeed fall between

equations I and 2.

In the following we shall use two aerosol transport models to simulate the

distribution in the Southern Hemisphere of biomass burning aerosol and natural



maritime and mineral aerosol. Model 1 is given by Tegen et al. (1997) and Model

2 by Ghan et al. (2000abc). We shall use the results to answer the following

questions:

• For a given error in the satellite retrieval, what is the fraction of the biomass

burning aerosol forcing that is detectable by the satellite (e.g. above a given

threshold)?

• How accurately can satellites be used to detect man-made radiative forcing

above background aerosol?

• Using the spatial distributions of the aerosol from Model 1 and Model 2, and

the equations for the LOW and HIGH estimates of the satellite retrievals,

what is the overall error in assessing the aerosol forcing (radiative effects

above the background)?

3.0 Model and observational data

To simulate the distribution of smoke aerosol in the Southern Hemisphere

we turn to the published results of Tegen et al. (1997)

(http://gacp.giss.nasa.gov/transport/). The data consist of monthly mean

values of optical thickness distributed over the globe on a 4 by 5 degree grid and

divided by aerosol types that include mineral dust (Tegen and Fung, 1995), sea

salt (Tegen et al., 1997), sulfate (Chin et al., 1996) and carbonaceous aerosol

(Liousse et al., 1996). The carbonaceous aerosol is further divided into organic

and black carbon categories. We assume that the sum of organic and black

carbon aerosol optical thickness in the Southern Hemisphere represents the

optical thickness contribution from biomass burning and are man-made



contributions.

Tegen et al. (1997) compare their model results with optical thickness

measurements taken from AErosol RObotic NETwork (AERONET) (Holben et

al., 1998) radiometers at various global locations. At stations near the source

regions of Southern Hemisphere biomass burning, the model appears to severely

underestimate the optical thickness. Figure 2 further illustrates the under

prediction. The model produces monthly mean values of optical thickness no

greater than 0.25, while values 2-7 times larger are observed by the AERONET

stations. The model's under prediction is most serious during the height of the

biomass burning season in August and September, but also relatively high in

October. The model's prediction of optical thickness is fairly accurate in the pre-

burning time period of June and July suggesting that the background aerosol is

well-predicted. The under prediction of smoke seems to be worse for the stations

in South America and less severe for Mongu, the only African station in this

analysis.

Estimating global source strength of biomass burning is more difficult

than estimating where the sources are located or in transporting the aerosol from

the source areas. We can identify biomass burning regions using satellite fire

counts (Setzer and Pereira, 1991; Prins et al., 1998), but quantification of the

amount of aerosol emitted must be compiled from production inventories and

requires a number of assumptions (Liousse et al., 1996). Furthermore, the global

inventories used in the transport model of this study are based on statistics from

the 1975-1980 period (Liousse et al., 1996; Hao et al., 1990). Emission strengths

could certainly have increased from the years the statistical inventories were

compiled in the late 1970s to the mid 1990s when the AERONET sunphotometer



data were acquired.

On the other hand we have no reason to mistrust the model's ability to

transport the smoke away from the source regions. Transport is provided by the

Lagrangian GRANTOUR model and includes transport, transformation and

removal of aerosol (Walton et al., 1988). The NCAR Community Climate Model

(CCM1) provides the wind and precipitation fields. Thus we expect the model

well-represents the geographical distribution of smoke aerosol optical thickness,

while underestimating the magnitude. To compensate for the model's

underestimation of smoke magnitude, we boost the model-derived optical

thickness by multiplicative factors derived from Figure 2 and specific to month.

Because Figure 2 suggests the underestimation is more severe for South America

than for Africa, we use two sets of multiplicative factors. For August the factors

are 3.5 for South America and 2.5 for the rest of the world. For September and

October the factors are 8.0 and 4.0, for South America and the remainder of the

world, respectively.

4.0 Fraction of the aerosol forcing above a given satellite detection threshold

We use the results of Tegen et al. (1997) to determine how much of the

direct aerosol forcing occurs above the noise levels of the MODIS aerosol

retrieval (Equations 1 and 2). To do so we calculate histograms of the aerosol

optical thickness provided by Tegen et al. (1997). We include only Southern

Hemisphere and tropical grid squares, south of latitude 12 ° N. Before summing

the data in the histograms the monthly mean optical thickness values are

adjusted twice. First by the multiplicative values discussed in Section 3 to



compensate for the underprediction of smoke sources. The second is by

expanding each monthly mean value into a lognormal distribution with standard

deviation equal to 0.50. The second adjustment is to account for the variability of

daily values measured by satellite that are not included in the monthly means.

The value of 0.50 for standard deviation was calculated by analyzing several

AERONET stations in biomass burning regimes (Figure 3). A normal

distribution gives similar results to the lognormal distribution.

The optical thickness frequency histogram (fi) is defined as:

£= Ni
ZUi
i

(3)

where the bins are defined as intervals of optical thickness and N i is the number

of area-weighted grid squares in bin i. In the single scattering approximation

smoke aerosol forcing is directly proportional to z (Penner, 1992; Hobbs, 1997).

Thus, the histogram representing smoke aerosol forcing (Fi) will be given by

"ci£

(4)

where "_i is the optical thickness in bin i. If "¢idesignates the smoke aerosol optical



thickness then Equation 4 represents a histogram of the smoke aerosol forcing

resulting from human activity in the Southern Hemisphere. If _i designates the

total aerosol optical thickness from both natural and man made pollutants then

Equation 4 represents a histogram of the total aerosol effect in the Southern

Hemisphere. Equation 4 tells us how much of the smoke aerosol forcing occurs

at each optical thickness. The cumulative histogram form of Equation 4 tells us

how much of this forcing occurs above the noise levels of the retrieval algorithm.

Figure 4 is a cumulative histogram of the smoke aerosol forcing in the

Southern Hemisphere divided into land and ocean components. If we

conservatively take noise thresholds for the smoke optical thickness of _s=0.05

over ocean and _:s= 0.10 over land, then 81% of the smoke forcing over ocean and

92% over land will be above noise levels. Because the land represents 20% of the

area of our domain but 43% of the smoke forcing (area weighted by "¢), 86% of the

smoke forcing in the Southern Hemisphere will be detectable by the MODIS

algorithms.

We apply a similar analysis to the total aerosol composed of both smoke

and other aerosol components. The results are the cumulative histograms of

Figure 5. We see that MODIS will be able to detect 94% of the total aerosol effect

in the Southern Hemisphere.

5.0 Estimating background conditions from satellite

Satellites see the atmosphere as it is now. Remote sensing will measure

the total aerosol consisting of both the natural aerosol and the aerosol due to

human activity. Remote sensing cannot effectively determine the man-made



component of the aerosol optical thickness without assuming a value for the

'background' optical thickness and subtracting the background component from

the total. Estimating the 'background' or natural aerosol component introduces

much of the error in using satellites to determine the global aerosol forcing by

human activity. We attempt to quantify the uncertainty in making this estimate

of background conditions.

One method to estimate background conditions during the biomass

burning season is to observe total aerosol optical thickness from satellite in a

month with n___oburning, and designate these conditions as 'background' in a

month with burning. We can test the uncertainty in this method by using the

Tegen et al. (1997) results. The background aerosol in the Tegen et al. (1997)

results for August is the sum of the

(dust+salt+sulfates). Which month's

non-smoke categories of aerosol

total aerosol optical thickness

(dust+salt+sulfates+smoke) best represents the non-smoke aerosol optical

thickness of August? We test this month by month in a root mean square error

(rmse) sense for every model grid box, for all latitudes south of 12 ° N. The

results indicate that the minimum difference between monthly mean total

aerosol optical thickness and August background aerosol occurs for the month of

May with a rmse of 0.027 in optical thickness units.

Although there are other methods of estimating background aerosol, and

other methods to measure the uncertainty in making this estimate, the value of

0.027 is a reasonable first guess for the uncertainty. We will use this value as a

measure of uncertainty in estimating background aerosol optical thickness for

the rest of this study.



6.0 Estimate of the error in satellite sensing of aerosol radiative forcing

Error is introduced into the aerosol retrieval algorithm by four sources:

(1) The uncertainty in estimating background aerosol optical thickness. We will

use the value of _+0.027 discussed in Section 5.0.

(2) The uncertainty in estimating surface reflectance. We will use the theoretical

values of A'¢---!-0_.05 due to uncertainty in the surface reflectance for both land and

ocean as a conservative upper bound, as discussed in Section 2.0. We will also

use the LOW value of AI:----__.01 for over the ocean as discussed in Section 2.0.

(3) The uncertainty in estimating the aerosol model including the aerosol phase

function, refractive index and single scattering albedo.

(4) The uncertainty introduced by instrument calibration errors.

Both error sources (3) and (4) are dependent on the magnitude of the optical

thickness. We combine them into one term (ATi dep) and calculate the value from

the forcing histograms (Equation 4).

=Ea' /ep
i

(5)

where A'_idep is defined by +0.05_ i (ocean) and _+0.201:i (land), using theoretical

estimates, or +0.15_ i for land, using empirical estimates as discussed in Section

2.0.



Table 1 lists the error estimates for the four sources of error with the two

z_dependent sources combined. The different types of errors are combined in the

rmse sense. The total Southern Hemisphere values are calculated by weighting

the land errors by 43% and the ocean errors by 57% because the land makes up

43% of the smoke aerosol forcing in this August data set. The first three columns

of Table 1 express /_z in optical thickness units. The analysis suggests that

MODIS will determine smoke aerosol forcing in the Southern Hemisphere to

within 0.07 in optical thickness units.

Following Penner et al. (1992) smoke aerosol forcing, F, can be expressed

as

(6)

assuming no absorption. S is the solar flux incident at the top of the atmosphere,

T is the atmosphere clear-sky transmittance, A¢ is the fraction of clouds, R s is the

surface albedo, B is the fraction of radiation backscattered to space and z is the

smoke optical thickness. Thus we see that the smoke forcing is directly

proportional to 1: and if we assume that all other parameters remain constant

then the uncertainty in smoke aerosol forcing is directly proportional to

AF=CA_ (7)



Penner et al. (1992)'svalues of C are 44 Wm -2 for ocean and 30 Wm -2 land. The

difference between ocean and land is due to differences in surface albedo. Hobbs

et al. (1997) uses different values for the smoke optical properties based on recent

observations, but the same values for cloud fraction, surface albedo, etc. The

Hobbs et al. (1997) values of C are 37Wm -2 for ocean and 25 Wm -2 land. The

middle three columns of Table 1 list the error estimates in units of Wm-2 after

applying Equation 7 to the uncertainties in optical thickness units and using the

Hobbs et al. (1997) values for C. The analysis suggests that MODIS remote

sensing of aerosol will be able to determine the smoke aerosol forcing in the

Southern Hemisphere only to +_22.1Wm -2.

The uncertainty can also be expressed as a relative error given by Az/_

_A_ifi

"_ i "¢i "¢m ean

(8)

where F i is the forcing histogram (Equation 4), fi the optical thickness histogram

(Equation 3), xi the optical thickness of the histogram bin and AI i the uncertainty

for '_i as given by Equations I or 2. Xrnean is defined as



"C,,,ea,,= Y_.,'cifi

(9)

Southern Hemisphere August values for gmean are 0.21 for the land and 0.08 for

the ocean. The relative errors given in percentage units are shown in the last

three columns of Table 1. In percentage units we see that we can expect to

determine smoke aerosol forcing in the Southern Hemisphere to only +56%.

The results in Table 1 are based on theoretical estimates of uncertainty

associated with making individual retrievals as applied to the August mean

transport model distribution of smoke optical thickness. The largest uncertainty

is introduced by errors in determining the surface reflectance, both in an absolute

and a relative sense. Substantial error is also introduced in the g dependent error

over land. As discussed in Section 2.0, field experiment data suggest the

theoretical estimates of retrieval uncertainty are conservative and that we may

expect improvements in exactly the types of error contributing the greatest

values of uncertainty to Table 1.

Table 2 lists the more optimistic values of expected uncertainty based on

empirical estimates (Equations 2). The results based on Equation 2 reduce the

uncertainty of estimating smoke forcing in the Southern Hemisphere from +_2.1

Wm "2 and +56% to +1.5 Wm -2 and +33%. Most of the improvement is due to

reducing the errors introduced by uncertainty in the ocean surface reflectance.

The largest remaining uncertainty is due to errors in estimating

background aerosol and in estimating surface reflectance over land. There is a

possibility that in an ensemble of retrievals over different surface types the land



surface reflectanceerror may be further reduced. However, ensembleaveraging

will not reduce the uncertainty in the background error. Almost +1 Wm -2

uncertainty will remain in estimates of smoke forcing even if the errors in the

aerosol retrieval are reduced to zero.

7.0 Smoke seasonal uncertainty

The analysis in the previous section focused on uncertainties in the

August monthly mean estimates of smoke forcing. However, the Southern

Hemisphere biomass burning season extends for three months: August-October.

We follow the same analysis as in Section 6.0, but use optical thickness

histograms constructed from three months of data to calculate the smoke forcing

uncertainties for the entire biomass burning season.

Uncertainty in the 3-month season is essentially the same as the August

values alone. Using theoretical retrieval error, the uncertainty in estimating

seasonal smoke forcing in the Southern Hemisphere for the biomass burning

season will be 50% or 2.2W/m -2. This improves to 30% and 1.5W/m -2 if the

retrieval uncertainty is based on the optimistic empirical values.

8.0 Sensitivity to transport model

In the preceding sections a specific aerosol transport model (Model 1)

reported by Tegen et al. (1997) provided the only distributions of aerosol optical

thickness used in the analyses. How sensitive are the preceding estimates of

uncertainty to the choice of transport model? We explore this issue by

performing a similar analysis using a different model. Model 2 (Ghan et al.,



2000abc) couples a general circulation model (GCM) with a tropospheric

chemistry model becoming a global chemistry model (GChM). The two models

have independent parameterizations governing aerosol transformation and

removal.

One of the major differences between Model I and Model 2 is that Model

2 does not separate organic and black carbon aerosol from other types of aerosol.

Smoke aerosol is therefore combined with other aerosol types under the category

of accumulation mode aerosol. We are forced to assume that accumulation mode

optical thickness in Model 2 output is equivalent to smoke optical thickness. By

comparing Model 2 optical thicknesses in biomass burning source regions with

AERONET sunphotometer data, we find the same under prediction found when

comparing Model I and we adjust the Model 2 data by the same multiplicative

factors.

Following the same procedure as in Section 4.0 we construct histograms

from the Model 2 data set. Figure 6 compares the aerosol optical thickness

histograms (fi) of the two transport models. The two models produce different

distributions of aerosol optical thickness. Overall, Model 2 produces higher

optical thickness in the Southern Hemisphere than does Model 1. The mean

accumulation mode "¢for Model 2 is 0.28 over land and 0.14 over ocean. This

compares with mean smoke _ of 0.21 over land and 0.08 over ocean in Model 1.

However, for a fair comparison we should compare accumulation mode aerosol

in both models and combine smoke with sulfate in Model 1. The combined

accumulation mode aerosol consisting of smoke plus sulfate in Model I gives

mean "¢of only 0.24 over land and 0.10 over ocean. Moreover, the smoke+sulfate



optical thickness histogram resembles the smoke-only distribution better than

the distribution of Model 2, demonstrating that Model I and Model 2 produce

different aerosol optical thickness distributions.

Figure 7 shows the cumulative histogram constructed from Model 2

output. Virtually all the data exceeds the threshold values of "¢=0.10 over land

and "c=0.05 over ocean that were established in Section 4.0. Specifically,

weighting the data by percentage of aerosol forcing found over land and ocean,

respectively, we find that 97% of the Southern Hemisphere aerosol forcing will

be above noise levels of the MODIS retrieval. This is an even larger percentage

than model l's results for total aerosol effect that included dust and sea salt

aerosol in addition to accumulation mode aerosol types.

Tables 3 and 4 give the estimated uncertainties using Model 2.

Comparing Tables 3 and 4 to Tables I and 2 show little substantial difference in

absolute uncertainty between choice of transport model. The absolute

uncertainties are transparent to the choice of transport model, even when the

transport models resolve different parameters and result in different mean

optical thicknesses. Model 2 has consistently lower relative errors because it has

a greater mean optical thickness not because it has lower absolute error.

9.0 Discussion and Conclusions

Global distributions of aerosol optical thickness produced by transport

models enable us to estimate the range of uncertainty we should expect from

satellite remote sensing of aerosol direct forcing at the top of the atmosphere.

Specifically we put the MODIS aerosol retrievals to the test and limit our study to



biomass burning aerosol in the Southern Hemisphere. We want to know how

much of the smoke forcing will be above the retrievals' noise level and how well

we will be able to estimate the Southern Hemisphere smoke forcing.

Roughly between 85- 97% of the smoke forcing will occur in areas above

noise level, and between 94-99% of the total aerosol radiative effect will be

discernible from satellite.

Even so, we will only be able to determine direct smoke aerosol forcing to within

1.5-2.1 Wm-2 (33-56%) depending on the uncertainty of our retrievals. The larger

uncertainty corresponds to theoretical estimates of retrieval accuracy. The smaller

uncertainty corresponds to estimates of retrieval accuracy based on empirical evidence

from field experiments. Preliminary validation of actual MODIS retrievals strongly

suggests the smaller uncertainty, especially in an ensemble average over several

observations.

Uncertainty in estimating the background aerosol contributes to the

overall uncertainty in determining smoke aerosol forcing from satellites.

Analyzing just the uncertainty due to the retrievals without the contribution

from errors in estimating background conditions, the range of uncertainty in

estimating smoke forcing decreases to 1.2-2.0 Wm-2 (19-48%), again depending

on the uncertainty of the MODIS retrievals.

These results calculated for the month of August represent the total

Southern Hemisphere biomass burning season.

The range of absolute uncertainty appears not to be sensitive to the choice

of transport model used to estimate the global distribution of smoke aerosol.

However, the range of relative error does depend on the choice of transport



model if one model produces a generally hazier atmosphere than the other.

How can we further reduce these uncertainties? By using satellite remote

sensing to directly measure aerosol radiative fluxes rather than first retrieving

aerosol optical thickness, much of the _-dependent error will be eliminated

[Kaufman, 2000 #1839]. However, the contribution from uncertainty in

estimating background and surface reflectance remains. Just the surface

uncertainties alone account for 0.7-1.6 Wm-2 (11-48%).

In this study we have demonstrated the strengths and weaknesses of

using satellite remote sensing as a tool for determining global aerosol radiative

forcing at the top of the atmosphere. We see that satellites do best in regions of

high aerosol loading, but the vast areas of low aerosol optical thickness introduce

uncertainties in the determination. Further reduction of uncertainties calls for a

strategy that utilizes a combination of satellite remote sensing with ground-

based remote sensing and global transport models. Such an assimilated

approach will be necessary to realize the full potential of satellite remote sensing.
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Figure Captions

Figure 1. Southern Hemisphere distribution of simulated August monthly mean

smoke optical thickness (top) and retrieval signal-to-noise ratio (r/At) based on

Equations I and applied to the August monthly mean results. Data is derived

from Model 1 (Tegen et al., 1997).

Figure 2. Comparison of monthly mean values of optical thickness at 550 nm

derived from transport model results (Tegen et al., 1997) with values observed by

AERONET stations near biomass burning source regions in the Southern

Hemisphere. The top figure shows the data grouped by observing station. The

bottom figure shows the data grouped by months. Note the different scales on

the x and y axes. The solid line represents where the model and observations

would be in perfect agreement.

Figure 3. Standard deviation about the monthly mean aerosol optical thickness

plotted against the monthly mean. The standard deviations and monthly means

are calculated from daily mean values for AERONET stations near biomass

burning source regions.



Figure 4. Cumulative histogram of the smokeaerosol forcing in the Southern

Hemisphere for August asfunction of aerosol optical thickness and divided into

land and oceancomponents. Arrows indicate percentageof smoke forcing

occurring in grid squaresabovespecified smokeaerosoloptical thickness

thresholds. Histograms calculated from Tegen et al. (1997)data.

Figure 5. Cumulative histogram of the total aerosol effect in the Southern

Hemisphere for August as function of aerosol optical thickness and divided into

land and ocean components. Arrows indicate percentage of total effect occurring

in grid squares above specified smoke aerosol optical thickness thresholds.

Histogram derived from Tegen et al. (1997) simulated data.

Figure 6. Aerosol optical thickness frequency histograms over land (top) and

ocean (bottom) of the simulated Southern Hemispheres during August for two

aerosol transport models. Model 1 is Tegen et al. (1997), which separates smoke

from sulfate aerosol. Model 2 is Ghan et al. (1997), which combines these two

aerosol types into a category labeled accumulation mode. The Southern

Hemisphere mean aerosol optical thickness (1:) is given in each category.

Figure 7. Model 2 cumulative histogram of the accumulation mode aerosol

forcing in the Southern Hemisphere for August as function of the aerosol optical

thickness and divided into land and ocean components. Arrows indicate

percentage of smoke forcing occurring in grid squares above specified smoke



aerosoloptical thickness thresholds. Histogram derived from Ghan et al. (1997)

simulated data.



Table 1Uncertaintyin estimatingsmokeaerosolforcingin theSouthernHemisphere
from MODIS aerosolopticalthicknessusingtheoreticalestimatesof retrievaluncertainty
andModel

background
surface
't dependent

rmse

combined

optical thickness units

Land Ocean S.H.

0.027 0.027 0.027

0.05 0.05 0.05

0.09 0.01 0.04

0.11 0.06 0.07

radiative flux (Wm -2)

Land Ocean S.H.

0.7 1.0 0.9

1.3 1.8 1.6

2.3 0.4 1.2

relative error (%)

Land Ocean S.H.

13 36 26

23 66 48

20 5 II

2.7 2.1 2.1 33 75 56

Table 2 Uncertainty in estimating smoke aerosol forcing in the Southern Hemisphere

from MODIS aerosol optical thickness using empirical estimates of retrieval uncertainty
and Model

optical thickness units radiative flux (Wm -2) relative error (%)

Land Ocean S.H. Land Ocean S.H. Land Ocean S.H.

background 0.027 0.027 0.027 0.7 1.0 0.9 13 36 26
surface 0.05 0.01 0.03 1.3 0.4 0.7 23 13 17

dependent 0.07 0.01 0.04 1.8 0.4 0.9 15 5 9

rmse 0.09 0.03 0.05 2.3 1.1 1.5 30 38 33

combined

Table 3 Uncertainty in estimating smoke aerosol forcing in the Southern Hemisphere

from MODIS aerosol optical thickness using theoretical estimates of retrieval uncertainty

and Model 2.

background

surface

dependent

optical thickness units radiative flux (Wm -2) relative error (%)

Land Ocean S.H. Land Ocean S.H. Land Ocean S.H.

0.027 0.027 0.027

0.05 0.05 0.05

0.10 0.01 0.04

0.7 1.0 0.9

1.3 1.8 1.6

2.4 0.4 1.2

10 19 15

18 35 28

20 5 ll

rmse 0.11 0.06 0.07 2.8 2.1 2.2 28 40 39

combined



Table4 Uncertaintyin estimatingsmokeaerosolforcingin theSouthernHemisphere
from MODIS aerosolopticalthicknessusingempiricalestimatesof retrievaluncertainty
andModel 2.

optical thicknessunits radiativeflux (Wm2) relativeerror (%)
Land Ocean S.H. Land Ocean S.H. Land Ocean S.H.

background 0.027 0.027 0.027 0.7 1.0 0.9 10 19 15
surface 0.05 0.01 0.03 1.3 0.4 0.7 18 7 11
"cdependent 0.07 0.01 0.04 1.8 0.4 0.9 15 5 9

rmse 0.09 0.03 0.05 2.3 1.1 1.5 25 21 21

combined
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Figure 2. Comparison of monthly mean values of optical thickness at 550 nm derived

from transport model results (Tegen et al., 1997) with values observed by AERONET

stations near biomass burning source regions in the Southern Hemisphere. The top figure

shows the data grouped by observing station. The bottom figure shows the data grouped

by months. Note the different scales on the x and y axes. The solid line represents where

the model and observations would be in perfect agreement.
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Figure 4. Cumulative histogram of the smoke aerosol forcing in the Southern

Hemisphere for August as function of aerosol optical thickness and divided into land and

ocean components. Arrows indicate percentage of smoke forcing occurring in grid

squares above specified smoke aerosol optical thickness thresholds. Histogram derived

from Tegen et al. (1997) simulated data.
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